Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Tackling High-Dimensional Tensor Clustering In the paper “Jointly Modeling and Clustering Tensors in High Dimensions,” Cai, Zhang, and Sun address the challenge of jointly modeling and clustering tensors by introducing a high-dimensional tensor mixture model with heterogeneous covariances. The proposed mixture model exploits the intrinsic structures of tensor data. The authors develop a computationally efficient high-dimensional expectation conditional maximization (HECM) algorithm and show that the HECM iterates, with an appropriate initialization, converge geometrically to a neighborhood that is within statistical precision of the true parameter. The theoretical analysis is nontrivial because of the dual nonconvexity arising from both the expectation maximization-type estimation and the nonconvex objective function in the M step. They also study the convergence rate of the algorithm when the number of clusters is overspecified and when the signal-to-noise ratio diminishes with sample size. The efficacy of the proposed method is demonstrated through numerical experiments and a real-world medical data application.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Abstract The advancement of single cell RNA-sequencing (scRNA-seq) technology has enabled the direct inference of co-expressions in specific cell types, facilitating our understanding of cell-type-specific biological functions. For this task, the high sequencing depth variations and measurement errors in scRNA-seq data present two significant challenges, and they have not been adequately addressed by existing methods. We propose a statistical approach, CS-CORE, for estimating and testing cell-type-specific co-expressions, that explicitly models sequencing depth variations and measurement errors in scRNA-seq data. Systematic evaluations show that most existing methods suffered from inflated false positives as well as biased co-expression estimates and clustering analysis, whereas CS-CORE gave accurate estimates in these experiments. When applied to scRNA-seq data from postmortem brain samples from Alzheimer’s disease patients/controls and blood samples from COVID-19 patients/controls, CS-CORE identified cell-type-specific co-expressions and differential co-expressions that were more reproducible and/or more enriched for relevant biological pathways than those inferred from existing methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
